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Twist in an Exactly Solvable Directed Lattice Ribbon 
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We investigate the transition between a twisted regime and a disordered regime 
in a directed ribbon model on a cubic lattice. A fugacity corresponding to an 
interaction which models half-twists in the ribbon is introduced and the inter- 
acting model is solved exactly. Our  results suggest that conformational entropy 
and a local interaction which induces twist are key ingredients to model 
qualitatively the crossover behavior between a twisted (helical) regime and a 
denatured regime in duplex biopolymers such as DNA. 
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1. INTRODUCTION 

The traditional model of the conformational properties of linear polymers 
in dilute solution is the self-avoiding walk, ~'2) i.e., a one-dimensional 
piecewise linear curve on a lattice, subjected to particular geometrical 
constraints (self-avoidance). In spite of its simplicity, this model captures 
several of the essential features which determine the large-scale properties 
of such molecules and has been adapted to include attractive forces (to 
model collapse in polymers), closed to form a ring (to examine topological 
features such as knotting), and extended to a variety of related models 
relevant to branched polymers. However, some biologically important 
polymers such as duplex DNA and RNA exist as double-stranded molecules. 
where the two strands of complementary nucleotides are wound as right- 
handed helices around each other and around a common axis. 

It is believed that the duplex structure of DNA is needed to maintain 
the fidelity of a long genetic message. ~3'4~ In nature, the helix is the 
most commonly ~ccurring structure found in folded proteins, and this 
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observation extends to RNA and DNA. Such helical structures allow 
monomers in the linear molecules to align in space into energetically 
favorable conformations, at the cost of conformational entropy, lat 

The thermodynamic description of the conformational properties of 
these polymers entails a free energy minimum that selects the helical struc- 
tures in proteins, RNA, and DNA. In DNA, this free energy minimum is 
obtained by a double helix, at the price of a loss of conformational degrees 
of freedom, compensated for by interactions between monomers which are 
repeating along the two strands. This overcomes the conformational 
entropy at low temperatures, but a higher temperatures it is found that the 
free energy minimum favors a disordered regime; the molecule becomes 
untwisted and it is called denaturated. 

A model which has proved useful in modeling the double-helical struc- 
ture of DNA is the continuum ribbon model 15'6~ in which the hydrogen 
bonds between the nucleotides of the two strands form an orientable 
ribbon surface whose boundary is precisely the two backbone strands. In 
this picture the winding of the two strands corresponds to the twisting of 
the ribbon. In other words, the interactions between repeating structures in 
base pairs in the molecule induce a local twist in the ribbon counterpart. 

These factors can be modeled by a lattice ribbon model for DNA. tT~ 
The lattice ribbon will have conformational entropy due to both local 
degrees of freedom and global conformations. A fugacity which acts locally 
along the ribbon will represent the interaction between repeating units 
along the polymer chain. Of course, the correspondence between the 
physical nature of DNA and the lattice ribbon model is only qualitative; 
we expect to model the behavior of real biopolymers only at a qualitative 
level. The lattice ribbon model has several advantages. In the first instance, 
we can use techniques from the theory of self-avoiding walks to prove some 
results involving asymptotic behavior. ~2~ In the second instance, we are 
interested in an exactly solvable model, and a directed version of a lattice 
ribbon (analogous to a directed walk model t8"9~) will prove to be appro- 
priate in this case. 

In this paper we construct a directed lattice ribbon model with a local 
interaction which induces half-twist on a local scale in the ribbon. We solve 
the model and investigate its thermodynamic properties. In our model an 
ordered, helical regime with low conformational entropy is found at low 
temperatures, while a disordered regime is found at high temperatures. We 
organize the paper as follows: In Section 2 we introduce the directed 
ribbon model and find its generating function. The analytic structure of the 
generating function and the thermodynamics of the model are discussed in 
Section 3. We conclude the paper in Section 4 with a few comments about 
our results. 
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2. DESCRIPTION OF THE MODEL AND GENERATING 
FUNCTION 

We shall be concerned with the simple cubic lattice ,o~ '3 and we define 
a plaquette as a unit square, with vertices with integer coordinates. We can 
build a ribbon by taking a plaquette and appending a second plaquette on 
one of its edges. A new plaquette is appended onto an edge of the last 
plaquette, and the process is repeated while the ribbon grows in length. 
The first and last plaquette in a ribbon are adjacent to only one plaquette 
in the ribbon; we say that they have degree 1. On the other hand, the inter- 
mediate plaquettes in the ribbon are adjacent to two neighbors and have 
degree 2. Edges in the ribbon shared with two plaquettes are called ribbon 
edges, and those incident with only one plaquette are called boundary 
edges. 

Let {L j,/~} be the canonical unit vectors in ~3.  Suppose that R is a 
ribbon and let the maximal coordinate of the ribbon in the /~ direction 
be M. Suppose also that the last plaquette in the ribbon has maximal coor- 
dinate M. Then the last plaquette has at least one edge in the plane z = M. 
We also suppose that at least one of these edge, where we can append a 
new plaquette to continue the ribbon. We use the following rules in con- 
tinuing the construction of this ribbon: Any new plaquettes are added onto 
a boundary edge of the last plaquette, and either this addition increases the 
maximal coordinate M in the ~ direction or the plaquette is added in the 
~j plane. In addition, we require that if the last plaquette in R is in the tj 
plane, then the newly added plaquette must increase M; it cannot be added 
with the same orientation as the last plaquette. This last condition rules 
out arrangements as in Fig. 1, with the coordinate system as shown. This 
rule prevents the construction of a self-avoiding sequence of plaquettes in 
the plane, which would make this model not solvable. The addition of 
plaquettes which are guaranteed to increase the maximal coordinate at 

/ 

/ 

% 

/ 

Fig. 1. Two plaquettes may not be incident if they are in the ~ plane. 
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least with every second plaquette we add bestow a direction to the ribbon. 
In Fig. 2 we give some examples of directed ribbons. The orientation is 
fixed by the coordinate system in Fig. 1. 

Two directed ribbons may be concatenated end to end, and a new 
directed ribbon is the result; since the last plaquette on the first and the first 
plaquette on the second may have different orientations, one extra plaquette 
is needed is perform the construction. If r ,  is the number of directed ribbons 
of n plaquettes, then this construction gives 

r,r, ,<~r,+,,+t (2.1) 

In addition, it is easily checked that 2"<<. r, ~< 9", so that 

lim (log r,,)/n = log p (2.2) 
n ~ o o  

exists, and 2 ~< p <~ 9, (m) and, moreover, r,  <~ p"+ 1. 
Thus, there are exponentially many directed ribbons on n plaquettes. 

Associate a fugacity x with each plaquette; then the generating function of 
directed ribbons is 

g ( x ) =  ~ r ,x"  (2.3) 
n = l  

with radius of convergence p - i  and the limit x---, p - l  defines a ther- 
modynamic limit in this model. In fact, the limiting free energy per plaquette 
is given by - l o g  p. 

Twist can be generated in the directed ribbon by associating a local 
interaction with a local orientation of three successive plaquettes which, if 
repeated, will form a ribbon with helical geometry. This orientation is 
chiral, and we consider the mirror images in Fig. 3 as left-handed or right- 
handed by a right-hand rule. We associate a fugacity with each of the cases 
in Fig. 3. In Fig. 3(a) we associate a fugacity YL with each occurrence of 
this conformation in the ribbon; one may image an interaction along the 
dotted line between next-nearest-neighbor plaquettes giving rise to YL. The 
situation in Fig. 3(b) is similarly treated, albeit with a fugacity YR instead. 

(a) (b) (c) 

Fig. 2. Three directed ribbons, each with final plaquette in a different orientation. 
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YL YR 
(a) (b) 

Fig. 3. Local conformations which contribute to twist. The conformation in (a) twists in a 
left-handed sense, and that in (b) in a right-handed sense. We associate fugacities y ,  and .vR 
with (a) and (b), respectively. These fugacities may be considered as an interaction between 
next-nearest-neighbor plaquettes, represented by the broken lines. 

We solve for the generating function of directed ribbons with these 
interactions. In order to do so, let G,,(x, yt., YR; a) be the canonical 
generating function for a directed ribbon with n plaquettes and with last 
plaquette in the orientation a, where a takes values in {tT,/~?,fl~}. 

Consider the generating function G.+ ~(x, YL, YR; fJ) for a ribbon with 
(n+  1) plaquettes: It may be obtained from G,,(x, yL, yR; a) by adding a 
final plaquette in the orientation fj onto edges with maximal/~ coordinates 
in the last plaquette. Since conformations such as in Fig. 1 may not occur, 
a ribbon with final plaquette in the ff orientation may only be constructed 
by adding a plaquette to ribbons with last plaquettes in either the /~  or j/~ 
orientations. These cases are enumerated in Fig. 4. Observe that none of 
these can generate one of the patterns in Fig. 3, so that there is no new 
twist. Associating a fugacity x with plaquettes, we conclude that 

G.+ l(X, YL, YR; ~) = 2xG.(x, YL, YR;fl ~) + 2xG.(x, YL, YR; ld) (2.4) 

A similar analysis may be done in the other two cases; these two cases are 
analogous; one may be obtained from the other by interchanging ? andj. 
The decomposition is given in Fig. 5, and it gives the recursions 

G,,+ l(x, YL, YR; fC~) = xG,,(x, Yr., YR; fd) + 2x2G,,_ ~(x, YL, YR; fC~) 

+ 2x2(yL + YR) G._ I(x, YL, YR;fl ~) 
(2.5) 

Gn + 1  (X, YL, Y .  ;fl~) = xG.(x,  YL, YR ;fl<) + 2x2G. -1 (x, YL, YR ;fl~) 

+ 2xZ(yL + YR) G._ I(x, YL, YR; "ilc) 

Finally, the generating function for a ribbon with n plaquettes is 
obtained by adding the three cases in (2.4) and (2.5): 

G,,(x, YL, YR) = G,,(x, Yr., YR; ~]) + G.(x, Yz., YR;: fc) + G.(x, YI_, YR; fd ) 

(2.6) 
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. . . . .  . . . . .  . . . . . . .  . . . . . . .  

Fig. 4. The partial generating function for ribbons with final plaquette in the ?] orientation 
may be obtained from the partial generating functions with one plaquette less: just add the 
last plaquette in the ~ orientation. These are all the conformations which give a ribbon when 
the last plaquette has been added. 

Since G,,(x, y t . ,yn;a)  is a genera t ing  func t ion  for a directed r i b b o n  
with n plaquet tes ,  it m u s t  c o n t a i n  a factor x". Define H,,(x, yL, Yn; a)= 
x-"G,,(x, YL, Yn; a), then  the recurs ions  (2.5) an d  (2.6) become  (where we 
suppress  the fugacities as a rg u me n t s  in 1t,,) 

H,,+ ,(?]) = 2H,,(/~#) + 2H,,(fl~) 

n.+](] fc)=nn( f fc )+2n, ,_ t ( :k)+2(yx .+ yn)H,,_l([c?) (2.7) 

H,,+ 1([el) = H,,([cl) + 2H._  ~( fcl) + 2(y, .  + Yn) H . _  ~(ffc) 

In  order  to solve these, we need some ini t ia l  condi t ions :  they are second-  
order  re la t ions ,  so we specify b o t h  H~(a)  a n d  n2(o" ). C o n s t r u c t i n g  all the 
directed r i bbons  up  to length  2 gives HI(?])=HI(ffc)=HI(fc?)=I, 
H 2 ( i ' ] ) = 4  , and  Hz(]fc)=H2([c~)=3. Observe  that  G,,(x, y l . , yn ;a )=  
Y'-,,~= 1 H , ( a ) x " ,  so mul t ip ly  (2.7) by  x "+ ] a n d  s u m  over  n. Col lect ing terms 
gives 

G(x, Yz., Yn; ~J) 

= x + 2x[  G(x, YL, Yn ;fl~) + G(x, YL, Yn; k~)]  

G(x, YL, Yn;flc)( 1 - x - 2x 2) 

= x  + 2x2[ 1 + (YL, Yn) G(x, YL, Yn; /~?) ] 

G(x, Yr., Yn;/c?)( 1 --  x - 2x 2) 

= x + 2x2[ 1 + (Yt_ + YR) G(x, Yz., Yn;fl~)]  (2.8) 

. . . .  . . . . . .  . . . . . .  

.... - , / /  / 

Fig. 5. 

. . . . .  . . . .  . . . . . . .  

The partial generating function for ribbons with final plaquette in the/~? or in the fl~ 
orientation may be decomposed into these seven cases. 
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which may  be easily solved to give 

G(x, YL, YR;] fc) = G(x, YL, YR; fd) = (X + 2X2)[ 1 -- X -- 2X 2 -t- 2X2( YL -I- YR)] 
( 1 -- X -- 2X2) 2 -- 4x4(yL + yR) 2 

(2.9) 

Substituting in (2.8), we obtain the full generating function: 

2x( l  + 2 x )  2 
G(x, YL, YR) = X + ( 1 -- X - -  2 x  2) - 2x2(yL + YR) (2.10) 

3. S INGULARITY STRUCTURE AND T H E R M O D Y N A M I C S  

Since G(x, yt. ,yR) is dependent  only on x and (YL+ YR), we put y =  
(YL+ YR) in (2.10). The thermodynamic  limit is defined by the radius of  
convergence x~(y) of (2.10). Expanding (2.10) in a power series in x as 

G(x, y) = ~ x"H,(y)  (3.1) 
n =  1 

and doing a root  test implies that  

xc(y)--  lira [H,,(y)] ~/" (3.2) 

is the radius of  convergence of (2.10). The quanti ty [ - l o g x c ( y ) ]  is also 
the limiting free energy per plaquette in the ribbon. We may  compute  it by 
finding the smallest root  in te denomina tor  in (2.10): there are two roots: 
[ - 1 ___ (9 + 8y)~/2]/(4y +4) .  Selecting that  root  with min imum modulus  
gives the radius of  convergence: 

- 1 + ( 9  + 8y) ~/'- 
xc(y) = (3.3) 

4 y + 4  

The shape of the phase boundary  is determined by (3.3). If  y = 0 ,  then 
xc(0)=0.5 ,  and for la rgey,  xc(y)~ l /q / - f .  We plot xc(y ) in Fig. 6. The 
noninteracting directed r ibbon of Section 2 is recovered if y L = YR = 1 (or 
y = 2); then xc(2) = 1/3, and we conclude that  p = 3 in Eq. (2.2). I f  y = 0, 
then the singularit)  in xc(y) is a double pole, but  if y > 0 ,  then a line of  
simple poles is found. This line of  poles is a line of  branch points in the free 
energy. 

The thermodynamic  behavior  of  the directed lattice r ibbon can be 
found by taking derivatives of  its free energy. As an order parameter ,  we 
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Fig. 6. The phase diagram of the directed ribbon. 

define the mean left-handed twist density (Twz)  of the directed ribbon to 
be the average number of times, per plaquette, that the pattern of Fig. 3(a) 
appears. This is given by 

( TwL)(Yz, YR) 

a log xc(YL, YR) 
0 log YL 

YL{4(Yz + YR) + 5 -- [9 + 8(yz + YR)] ]/2} 
--(YL + YR+ 1)[9+8(yL + YR)] '/2 {[9+8(yL + YR)] ~/2- 1} 

(3.4) 

The fugacities YL and YR are dependent on temperature as well as other 
factors (such as salinity, pH, etc.). If y / <  1, then the conditions are such 
that there is a repulsive interaction along the dotted line in Fig. 3(a); if 
Yr. > 1, then we have an attractive interaction; there is no interaction at all 
ifyL = 1. The same cases apply to YR. (Observe that yz. will be a complicated 
function of temperature; for simplicit one may assume it is monotonic, but 
not even this is guaranteed. In any case, any connection between the real 
physical situation and our lattice ribbon will only be qualitative.) We 
assume that YL and YR are independent fugacities; this corresponds to the 
fact that left- and right-handed twists have different geometry and inter- 
action energies in DNA. 
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i y_R- 

-~s 

Fig, 7, 

-1'o -~ o ~ 1'o 
log y_L 

The mean twist per plaquette as a function of log YL. 

1'5 

We plot (TwL)(yL ,  YR) as a function of log y ,  in Fig. 7 with YR = 0  
and YR = 5. At zero temperature, log YL = + ~ ,  and the ribbon is highly 
twisted; decreasing the fugacity YL decreases the twist until it approaches 
zero for large temperatures (YL---' 0). The decrease in twist is confined to 
an intermediate region of the scale; outside this region, changes in the 
fugacity do not really affect the twist in the ribbon. The dependence of 
(TwL)  on Yz is best illustrated by computing the specific heat: if YR = 0, 
then it is 

a( TWLb(yL, YR) C(yL, O) = 
0 log YL 

= 2yL[ -- 63 -- lOOys_ -- 30y~ + 8y~ + (27 + 40y z + 14y~)(9 + 8yz),/z] 
(Yz+ 1) 2 { [ (9+  8yL) ' /2- 1] 2 (9 + 8yL)'/2} 3 

(3.5) 

We plot C(Yz.,YR) in Fig. 8 for y R = 0  and yR=5 (larger values ofyR do 
not change this picture qualitatively, it only moves the location of the peak 
toward larger values of YL). There are maxima in the specific heat (if 
yR=0)  y z =  1.466... and yL=6.9064 (if yR=5) .  At these maxima, the 
fluctuations in ( TwL)  are at a maximum, and the average size is given by 
the height of the peak: 0.1125... if YR = 0  and 0.1192... if yR=5.  At these 
maxima, the left-handed twist densities are 0.2320... if YR = 0 and 0.2413... 
i fy  R = 5. Thus, the fluctuations approach about 50 % of the size of (TwL).  
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-is -io -; ~ ; 1'0 1; 
log y_L 

The specific heat of the mean twist per p]aquette. Fig. 8. 

4. CONCLUSIONS 

In this paper we introduced and solved exactly a directed lattice rib- 
bon in the cubic lattice. The crossover between a twisted (or helical) regime 
and a random (or coiled) regime in the ribbon is driven by changes in the 
fugacities YL and YR and caused by changes in the free energy due to 
conformational entropy and short-ranged local interactions (which induce 
twist). These are the only properties of the lattice ribbon necessary for the 
observed behavior. The crossover is smooth, but it mimics a phase tran- 
sition in the sense that fluctuations increase in size as the crossover occurs 
(in this model the fluctuations in twist density approach 50% of the size 
of the twist). Moreover, the crossover occurs over a limited range of values 
of the fugacities; outside this range fluctuations are very small. 

If  a biopolymer such as DNA is heated in a good solvent to roughly 
80~ then the double helix is known to "melt" within a temperature range 
of about 10~ (3'H) This denaturization of DNA is called a helix-coil tran- 
sition in the molecular biology literature and is reversible if DNA is not 
heated to temperatures far above its melting temperature. Other factors, 
such as solvent quality (salt concentration, pH, etc.) can also denature 
DNA. The melting of ~-helices in proteins has the same general appearance 
as observed for DNA. (3,H) It  is believed that helices in DNA and in 
proteins are all due to short-ranged forces acting between repeating units 
along the polymer backbone. (H) The lattice ribbon model indicates that 
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these short-ranged forces and the conformational entropy changes which 
accompanies the crossover are enough to drive the helix-coil transition. 
The double helix in DNA is believed to be essential in maintaining the 
integrity of the genetic code t4) and it has to be very stable at biologically 
important temperatures. We observe this stability in the lattice ribbon out- 
side the crossover regime, where fluctuations in the twist density are very 
small. While we expect only qualitative explanations for the helix-coil 
crossover behavior of DNA and other biopolymers from a model as crude 
as the directed lattice ribbon, there are nevertheless some advantages to 
this model. It is sufficiently simple to be amenable to analytic treatment, 
yet it has sufficient complexity to model behavior observed in DNA and 
other biopolymers. In particular, we believe that the behavior of the 
directed lattice ribbon should be interpreted as good evidence that the 
helix-coil transition in DNA is a crossover between two regimes primarily 
determined by a combination of conformational entropy and a local inter- 
action which induces twist in the molecule. 
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